Systematic Transcriptome Wide Analysis of lncRNA-miRNA Interactions
نویسندگان
چکیده
منابع مشابه
Systematic Transcriptome Wide Analysis of lncRNA-miRNA Interactions
BACKGROUND Long noncoding RNAs (lncRNAs) are a recently discovered class of non-protein coding RNAs, which have now increasingly been shown to be involved in a wide variety of biological processes as regulatory molecules. The functional role of many of the members of this class has been an enigma, except a few of them like Malat and HOTAIR. Little is known regarding the regulatory interactions ...
متن کاملlncRNA-RNA Interactions across the Human Transcriptome
Long non-coding RNAs (lncRNAs) represent a numerous class of non-protein coding transcripts longer than 200 nucleotides. There is possibility that a fraction of lncRNAs are not functional and represent mere transcriptional noise but a growing body of evidence shows they are engaged in a plethora of molecular functions and contribute considerably to the observed diversification of eukaryotic tra...
متن کاملIntegrative Analysis of miRNA-mRNA and miRNA-miRNA Interactions
MicroRNAs (miRNAs) are small, noncoding regulatory molecules. They are involved in many essential biological processes and act by suppressing gene expression. The present work reports an integrative analysis of miRNA-mRNA and miRNA-miRNA interactions and their regulatory patterns using high-throughput miRNA and mRNA datasets. Aberrantly expressed miRNA and mRNA profiles were obtained based on f...
متن کاملAn Integrated Analysis of miRNA, lncRNA, and mRNA Expression Profiles
Increasing amounts of evidence indicate that noncoding RNAs (ncRNAs) have important roles in various biological processes. Here, miRNA, lncRNA, and mRNA expression profiles were analyzed in human HepG2 and L02 cells using high-throughput technologies. An integrative method was developed to identify possible functional relationships between different RNA molecules. The dominant deregulated miRNA...
متن کاملTranscriptome-wide Analysis of Exosome Targets
The exosome plays major roles in RNA processing and surveillance but the in vivo target range and substrate acquisition mechanisms remain unclear. Here we apply in vivo RNA crosslinking (CRAC) to the nucleases (Rrp44, Rrp6), two structural subunits (Rrp41, Csl4) and a cofactor (Trf4) of the yeast exosome. Analysis of wild-type Rrp44 and catalytic mutants showed that both the CUT and SUT classes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2013
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0053823